Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Expert Opin Ther Targets ; 27(11): 1035-1042, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37993172

RESUMO

INTRODUCTION: Interleukin-18 (IL-18) is a myeloid leukocyte inflammatory mediator whose main known function is to elicit IFNγ secretion from T and NK cells. AREAS COVERED: This function offers potential in cancer immunotherapy but as a single treatment, preclinical and clinical antitumor activities are modest. IL-18 bioactivity is chiefly downregulated by a decoy soluble receptor named IL18-binding protein (IL-18BP) that is induced by IFNγ as a negative feedback mechanism. Recent advances indicate promising efficacy of IL-18 at armoring CAR-T cells for the treatment of hematological malignancies. Preclinical research has also yielded IL-18 constructs that do not bind IL-18BP but have preserved activity on the receptor and exert markedly increased antitumor effects. Indeed, agents of this kind are undergoing clinical trials. The synergistic effects of IL-18 and IL-12 in combination to induce IFNγ are extremely potent but are toxic if systemically delivered. In mouse models, IL-12 and decoy-resistant variants of IL-18 can be efficaciously used as local treatments for tumors by exploiting mRNA intratumoral co-delivery. Moreover, antitumor T cells can be transiently engineered with mRNAs encoding this combination of cytokines to attain efficacious synergistic effects also upon intratumoral delivery. EXPERT OPINION: IL-18 certainly holds promise for immunotherapy in combination with other agents and for local approaches.


Assuntos
Interleucina-18 , Neoplasias , Animais , Camundongos , Imunoterapia , Neoplasias/terapia , Interleucina-12 , Citocinas
2.
J Immunother Cancer ; 11(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37918917

RESUMO

BACKGROUND: Peritoneal carcinomatosis is an advanced stage of cancer in which the disease has spread to the peritoneal cavity. In order to restore antitumor immunity subverted by tumor cells in this location, we evaluated intraperitoneal administrations of modified vaccinia virus Ankara (MVA) engineered to express single-chain interleukin 12 (scIL-12) to increase antitumor immune responses. METHODS: MVA encoding scIL-12 (MVA.scIL-12) was evaluated against peritoneal carcinomatosis models based on intraperitoneal engraftment of tumor cells. CD8-mediated immune responses, elucidated antitumor efficacy, and safety were evaluated following intravenous, intratumoral, or intraperitoneal administration of the viral vector. The immune response was measured by ELISpot (enzyme-linked immunosorbent spot), RNA sequencing, flow cytometry, intravital microscopy, and depletion of lymphocyte subsets with monoclonal antibodies. Safety was assessed by body-weight follow-up and blood testing. Tissue tropism on intravenous or intraperitoneal administration was assessed by bioluminescence analysis using a reporter MVA encoding luciferase. RESULTS: Intraperitoneal or locoregional administration, but not other routes of administration, resulted in a potent immune response characterized by increased levels of tumor-specific CD8+ T lymphocytes with the ability to produce both interferon-γ and tumor necrosis factor-α. The antitumor immune response was detectable not only in the peritoneal cavity but also systemically. As a result of intraperitoneal treatment, a single administration of MVA.scIL-12 encoding scIL-12 completely eradicated MC38 tumors implanted in the peritoneal cavity and also protected cured mice from subsequent subcutaneous rechallenges. Bioluminescence imaging using an MVA encoding luciferase revealed that intraperitoneal administration targets transgene to the omentum. The omentum is considered a key tissue in immune protection of the peritoneal cavity. The safety profile of intraperitoneal administration was also better than that following intravenous administration since no weight loss or hematological toxicity was observed when the vector was locally delivered into the peritoneal cavity. CONCLUSION: Intraperitoneal administration of MVA vectors encoding scIL-12 targets the omentum, which is the tissue where peritoneal carcinomatosis usually begins. MVA.scIL-12 induces a potent tumor-specific immune response that often leads to the eradication of experimental tumors disseminated to the peritoneal cavity.


Assuntos
Interleucina-12 , Neoplasias Peritoneais , Animais , Camundongos , Interleucina-12/genética , Omento , Vírus Vaccinia/genética , Luciferases
3.
EMBO Mol Med ; 15(11): e17804, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37782273

RESUMO

NK-cell reactivity against cancer is conceivably suppressed in the tumor microenvironment by the interaction of the inhibitory receptor NKG2A with the non-classical MHC-I molecules HLA-E in humans or Qa-1b in mice. We found that intratumoral delivery of NK cells attains significant therapeutic effects only if co-injected with anti-NKG2A and anti-Qa-1b blocking monoclonal antibodies against solid mouse tumor models. Such therapeutic activity was contingent on endogenous CD8 T cells and type-1 conventional dendritic cells (cDC1). Moreover, the anti-tumor effects were enhanced upon combination with systemic anti-PD-1 mAb treatment and achieved partial abscopal efficacy against distant non-injected tumors. In xenografted mice bearing HLA-E-expressing human cancer cells, intratumoral co-injection of activated allogeneic human NK cells and clinical-grade anti-NKG2A mAb (monalizumab) synergistically achieved therapeutic effects. In conclusion, these studies provide evidence for the clinical potential of intratumoral NK cell-based immunotherapies that exert their anti-tumor efficacy as a result of eliciting endogenous T-cell responses.


Assuntos
Anticorpos Monoclonais , Neoplasias , Camundongos , Humanos , Animais , Anticorpos Monoclonais/uso terapêutico , Antígenos de Histocompatibilidade Classe I , Células Matadoras Naturais , Linfócitos T CD8-Positivos , Microambiente Tumoral
4.
Mol Ther Nucleic Acids ; 33: 599-616, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37637207

RESUMO

IL-12 is a potent cytokine for cancer immunotherapy. However, its systemic delivery as a recombinant protein has shown unacceptable toxicity in the clinic. Currently, the intratumoral injection of IL-12-encoding mRNA or DNA to avoid such side effects is being evaluated in clinical trials. In this study, we aimed to improve this strategy by further favoring IL-12 tethering to the tumor. We generated in vitro transcribed mRNAs encoding murine single-chain IL-12 fused to diabodies binding to CSF1R and/or PD-L1. These targeted molecules are expressed in the tumor microenvironment, especially on myeloid cells. The binding capacity of chimeric constructs and the bioactivity of IL-12 were demonstrated in vitro and in vivo. Doses as low as 0.5 µg IL-12-encoding mRNA achieved potent antitumor effects in subcutaneously injected B16-OVA and MC38 tumors. Treatment delivery was associated with increases in IL-12p70 and IFN-γ levels in circulation. Fusion of IL-12 to the diabodies exerted comparable efficacy against bilateral tumor models. However, it achieved tethering to myeloid cells infiltrating the tumor, resulting in nearly undetectable systemic levels of IL-12 and IFN-γ. Overall, tethering IL-12 to intratumoral myeloid cells in the mRNA-transferred tumors achieves similar efficacy while reducing the dangerous systemic bioavailability of IL-12.

5.
Mol Ther Nucleic Acids ; 33: 668-682, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37650116

RESUMO

Intratumoral immunotherapy strategies for cancer based on interleukin-12 (IL-12)-encoding cDNA and mRNA are under clinical development in combination with anti-PD-(L)1 monoclonal antibodies. To make the most of these approaches, we have constructed chimeric mRNAs encoding single-chain IL-12 fused to single-chain fragment variable (scFv) antibodies that bind to transforming growth factor ß (TGF-ß) and CD137 (4-1BB). Several neutralizing TGF-ß agents and CD137 agonists are also undergoing early-phase clinical trials. To attain TGF-ß and CD137 binding by the constructions, we used bispecific tandem scFv antibodies (taFvs) derived from the specific 1D11 and 1D8 monoclonal antibodies (mAbs), respectively. Transfection of mRNAs encoding the chimeric constructs achieved functional expression of the proteins able to act on their targets. Upon mRNA intratumoral injections in the transplantable mouse cancer models CT26, MC38, and B16OVA, potent therapeutic effects were observed following repeated injections into the tumors. Efficacy was dependent on the number of CD8+ T cells able to recognize tumor antigens that infiltrated the malignant tissue. Although the abscopal effects on concomitant uninjected lesions were modest, such distant effects on untreated lesions were markedly increased when combined with systemic PD-1 blockade.

6.
Cell Rep Med ; 4(4): 101009, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37040772

RESUMO

Immune checkpoint-inhibitor combinations are the best therapeutic option for advanced hepatocellular carcinoma (HCC) patients, but improvements in efficacy are needed to improve response rates. We develop a multifocal HCC model to test immunotherapies by introducing c-myc using hydrodynamic gene transfer along with CRISPR-Cas9-mediated disruption of p53 in mouse hepatocytes. Additionally, induced co-expression of luciferase, EGFP, and the melanosomal antigen gp100 facilitates studies on the underlying immunological mechanisms. We show that treatment of the mice with a combination of anti-CTLA-4 + anti-PD1 mAbs results in partial clearance of the tumor with an improvement in survival. However, the addition of either recombinant IL-2 or an anti-CD137 mAb markedly improves both outcomes in these mice. Combining tumor-specific adoptive T cell therapy to the aCTLA-4/aPD1/rIL2 or aCTLA-4/aPD1/aCD137 regimens enhances efficacy in a synergistic manner. As shown by multiplex tissue immunofluorescence and intravital microscopy, combined immunotherapy treatments enhance T cell infiltration and the intratumoral performance of T lymphocytes.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/genética , Anticorpos Monoclonais , Terapia Combinada , Imunoterapia/métodos
7.
Oncoimmunology ; 12(1): 2197370, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035637

RESUMO

BO-112 is a poly I:C-based viral mimetic that exerts anti-tumor efficacy when intratumorally delivered in mouse models. Intratumoral BO-112 synergizes in mice with systemic anti-PD-1 mAbs and this combination has attained efficacy in PD1-refractory melanoma patients. We sought to evaluate the anti-tumor efficacy of BO-112 pre-surgically applied in neoadjuvant settings to mouse models. We have observed that repeated intratumoral injections of BO-112 prior to surgical excision of the primary tumor significantly reduced tumor metastasis from orthotopically implanted 4T1-derived tumors and subcutaneous MC38-derived tumors in mice. Such effects were enhanced when combined with systemic anti-PD-1 mAb. The anti-tumor efficacy of this neoadjuvant immunotherapy approach depended on the presence of antigen-specific effector CD8 T cells and cDC1 antigen-presenting cells. Since BO-112 has been successful in phase-two clinical trials for metastatic melanoma, these results provide a strong rationale for translating this pre-surgical strategy into clinical settings, especially in combination with standard-of-care checkpoint inhibitors.


Assuntos
Melanoma , Terapia Neoadjuvante , Animais , Camundongos , Linfócitos T , Imunoterapia/métodos , Melanoma/tratamento farmacológico , Anticorpos Monoclonais/farmacologia , Adjuvantes Imunológicos
8.
Cell Rep Med ; : 100978, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36933554

RESUMO

Interleukin-12 (IL-12) gene transfer enhances the therapeutic potency of adoptive T cell therapies. We previously reported that transient engineering of tumor-specific CD8 T cells with IL-12 mRNA enhanced their systemic therapeutic efficacy when delivered intratumorally. Here, we mix T cells engineered with mRNAs to express either single-chain IL-12 (scIL-12) or an IL-18 decoy-resistant variant (DRIL18) that is not functionally hampered by IL-18 binding protein (IL-18BP). These mRNA-engineered T cell mixtures are repeatedly injected into mouse tumors. Pmel-1 T cell receptor (TCR)-transgenic T cells electroporated with scIL-12 or DRIL18 mRNAs exert powerful therapeutic effects in local and distant melanoma lesions. These effects are associated with T cell metabolic fitness, enhanced miR-155 control on immunosuppressive target genes, enhanced expression of various cytokines, and changes in the glycosylation profile of surface proteins, enabling adhesiveness to E-selectin. Efficacy of this intratumoral immunotherapeutic strategy is recapitulated in cultures of tumor-infiltrating lymphocytes (TILs) and chimeric antigen receptor (CAR) T cells on IL-12 and DRIL18 mRNA electroporation.

9.
Oncoimmunology ; 12(1): 2147317, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36531687

RESUMO

Previous studies have shown that local delivery of tumor antigen-specific CD8+ T lymphocytes engineered to transiently express single-chain IL-12 mRNA is highly efficacious. Peritoneal dissemination of cancer is a frequent and often fatal patient condition usually diagnosed when the tumor burden is too large and hence uncontrollable with current treatment options. In this study, we have modeled intracavitary adoptive T cell therapy with OVA-specific OT-I T cells electroporated with IL-12 mRNA to treat B16-OVA and PANC02-OVA tumor spread in the peritoneal cavity. Tumor localization in the omentum and the effects of local T-cell encounter with the tumor antigens were monitored, the gene expression profile evaluated, and the phenotypic reprogramming of several immune subsets was characterized. Intraperitoneal administration of T cells promoted homing to the omentum more effectively than intravenous administration. Transient IL-12 expression was responsible for a favorable reprogramming of the tumor immune microenvironment, longer persistence of transferred T lymphocytes in vivo, and the development of immunity to endogenous antigens following primary tumor eradication. The efficacy of the strategy was at least in part recapitulated with the adoptive transfer of lower affinity transgenic TCR-bearing PMEL-1 T lymphocytes to treat the aggressive intraperitoneally disseminated B16-F10 tumor. Locoregional adoptive transfer of transiently IL-12-armored T cells appears to offer promising therapeutic advantages in terms of anti-tumor efficacy to treat peritoneal carcinomatosis.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Peritoneais , Camundongos , Animais , Interleucina-12/genética , RNA Mensageiro/genética , Neoplasias Peritoneais/terapia , Transferência Adotiva , Antígenos de Neoplasias/genética , Modelos Animais de Doenças , Microambiente Tumoral
10.
Cancer Immunol Res ; 11(2): 184-198, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36478221

RESUMO

IL12-based local gene therapy of cancer constitutes an active area of clinical research using plasmids, mRNAs, and viral vectors. To improve antitumor effects, we have experimentally tested the combination of mRNA constructs encoding IL12 and IL18. Moreover, we have used a form of IL18 [decoy-resistant IL18 (DR-18)] which has preserved bioactivity but does not bind to the IL18 binding protein decoy receptor. Both cytokines dramatically synergize to induce IFNγ release from mouse splenocytes, and, if systemically cotransferred to the liver, they mediate lethal toxicity. However, if given intratumorally to B16OVA tumor-bearing mice, the combination attains efficacy against the directly treated tumor and moderate tumor-delaying activity on distant noninjected lesions. Cotreatment was conducive to the presence of more activated CD8+ T cells in the treated and noninjected tumors. In keeping with these findings, the efficacy of treatment was contingent on the integrity of CD8+ T cells and cDC1 dendritic cells in the treated mice. Furthermore, efficacy of IL12 plus DR-18 local mRNA coinjection against distant concomitant tumors could be enhanced upon combination with anti-PD-1 mAb systemic treatment, thus defining a feasible synergistic immunotherapy strategy.


Assuntos
Interleucina-18 , Neoplasias , Animais , Camundongos , Neoplasias/genética , Neoplasias/terapia , Linfócitos T CD8-Positivos , Imunoterapia , Interleucina-12/metabolismo
11.
Cancer Res ; 82(23): 4373-4385, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36130020

RESUMO

The ability of conventional type-1 dendritic cells (cDC1) to cross-present tumor antigens to CD8+ T cells is critical for the induction of antitumor CTLs. Mice that are constitutively deficient in cDC1 cells have been reported to fail to respond to immunotherapy strategies based on checkpoint inhibitors. However, further work is needed to clarify the precise time during immunotherapy treatment that cDC1 cells are required for the beneficial effect of treatment. Here, we used a refined XCR1-DTR-Venus transgenic mouse model to acutely deplete cDC1 cells and trace their behavior using intravital microscopy. Diphtheria toxin-mediated cDC1 depletion prior to immunotherapy treatment with anti-PD-1 and/or anti-CD137 immunostimulatory mAbs completely ablated antitumor efficacy. The efficacy of adoptive T-cell therapy was also hampered by prior cDC1 depletion. After the onset of immunotherapy treatment, depletion of cDC1s only moderately reduced the therapeutic efficacy of anti-PD-1 and anti-CD137 mAbs. Intravital microscopy of liver-engrafted tumors revealed changes in the intratumoral behavior of cDC1 cells in mice receiving immunotherapy, and treatment with diphtheria toxin to deplete cDC1s impaired tumor T-cell infiltration and function. These results reveal that the functional integrity of the cDC1 compartment is required at the onset of various immunotherapies to successfully treat established tumors. SIGNIFICANCE: These findings reveal the intratumoral behavior of cDC1 dendritic cells in transgenic mouse models and demonstrate that the efficacy of immunotherapy regimens is precluded by elimination of these cells.


Assuntos
Toxina Diftérica , Neoplasias Hepáticas , Camundongos , Animais , Células Dendríticas , Imunoterapia/métodos , Linfócitos T CD8-Positivos , Anticorpos Monoclonais , Camundongos Transgênicos , Neoplasias Hepáticas/tratamento farmacológico
12.
Oncoimmunology ; 11(1): 2098657, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35859732

RESUMO

Recombinant-modified vaccinia virus Ankara (rMVA) is known to elicit potent antitumor immune responses in preclinical models due to its inherent ability to activate the innate immune system and the activation of adaptive responses mediated by the expression of tumor antigens and costimulus-providing molecules, such as CD40L and CD137L. Here, we evaluated different rMVA vectors in preclinical peritoneal carcinomatosis models (ID8.OVA-Vegf/GFP and MC38). We compared rMVA vectors expressing a tumor antigen (OVA or gp70) either alone or co-expressed with CD40L or/and CD137L. In tumor-free mice, the vector coding for the triple combination was only slightly superior, whereas, in tumor-bearing animals, we observed a synergistic induction of T lymphocytes specific against vector-encoded and non-encoded tumor-associated antigens. The enhanced activation of the immune response was associated with improved survival in mice with peritoneal carcinomatosis treated with a rMVA vector encoding both CD40L and CD137L. Thus, the triple transgene combination in vaccinia viral vectors represents a promising strategy for the treatment of peritoneal carcinomatosis.


Assuntos
Ligante 4-1BB/metabolismo , Neoplasias Peritoneais , Vaccinia , Animais , Ligante de CD40/genética , Imunidade , Camundongos , Neoplasias Peritoneais/terapia , Vírus Vaccinia/genética
13.
Int Rev Cell Mol Biol ; 369: 107-141, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35777862

RESUMO

Cytokines are pleiotropic soluble proteins used by immune cells to orchestrate a coordinated response against pathogens and malignancies. In cancer immunotherapy, cytokine-based drugs can be developed potentiating pro-inflammatory cytokines or blocking immunosuppressive cytokines. However, the complexity of the mechanisms of action of cytokines requires the use of biotechnological strategies to minimize systemic toxicity, while potentiating the antitumor response. Sequence mutagenesis, fusion proteins and gene therapy strategies are employed to enhance the half-life in circulation, target the desired bioactivity to the tumor microenvironment, and to optimize the therapeutic window of cytokines. In this review, we provide an overview of the different strategies currently being pursued in pre-clinical and clinical studies to make the most of cytokines for cancer immunotherapy.


Assuntos
Citocinas , Neoplasias , Citocinas/metabolismo , Humanos , Imunoterapia , Microambiente Tumoral
14.
Cancer Discov ; 12(9): 2140-2157, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35771565

RESUMO

Interleukin-8 (CXCL8) produced in the tumor microenvironment correlates with poor response to checkpoint inhibitors and is known to chemoattract and activate immunosuppressive myeloid leukocytes. In human cancer, IL8 mRNA levels correlate with IL1B and TNF transcripts. Both cytokines induced IL-8 functional expression from a broad variety of human cancer cell lines, primary colon carcinoma organoids, and fresh human tumor explants. Although IL8 is absent from the mouse genome, a similar murine axis in which TNFα and IL-1ß upregulate CXCL1 and CXCL2 in tumor cells was revealed. Furthermore, intratumoral injection of TNFα and IL-1ß induced IL-8 release from human malignant cells xenografted in immunodeficient mice. In all these cases, the clinically used TNFα blockers infliximab and etanercept or the IL-1ß inhibitor anakinra was able to interfere with this pathogenic cytokine loop. Finally, in paired plasma samples of patients with cancer undergoing TNFα blockade with infliximab in a clinical trial, reductions of circulating IL-8 were substantiated. SIGNIFICANCE: IL-8 attracts immunosuppressive protumor myeloid cells to the tumor microenvironment, and IL-8 levels correlate with poor response to checkpoint inhibitors. TNFα and IL-1ß are identified as major inducers of IL-8 expression on malignant cells across cancer types and models in a manner that is druggable with clinically available neutralizing agents. This article is highlighted in the In This Issue feature, p. 2007.


Assuntos
Citocinas , Fator de Necrose Tumoral alfa , Animais , Citocinas/metabolismo , Humanos , Infliximab/farmacologia , Infliximab/uso terapêutico , Interleucina-1beta/metabolismo , Interleucina-8/genética , Camundongos , Microambiente Tumoral , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
15.
Pharmacol Ther ; 239: 108189, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35430292

RESUMO

Interleukin-12 is considered a potent agent to enhance antitumor immune responses. It belongs to a family of heterodimeric cytokines with key roles in the up-regulation and down-regulation of cellular immunity. Since its discovery, recombinant IL-12 was found to exert potent antitumor effects in rodent tumor models and was rapidly tested in the clinic with an unfavorable benefit/toxicity profile. Localized delivery of IL-12 dramatically improves the therapeutic index and this approach is being applied in the clinic based on in-vivo electroporation of naked plasmid DNA encoding IL-12, mRNA formulations, viral vectors and tumor-targeted fusion proteins. Other biotechnology strategies such as IL-12-engineered local adoptive cell therapy and pro-cytokines can also be used to improve results and broaden the therapeutic window. Combination strategies of such localized IL-12-based approaches with checkpoint inhibitors are yielding promising results both preclinically and in the early-phase clinical trials.


Assuntos
Interleucina-12 , Neoplasias , Humanos , Interleucina-12/genética , Imunoterapia/métodos , Vetores Genéticos , Imunoterapia Adotiva , Fatores Imunológicos , Neoplasias/terapia
16.
J Immunother Cancer ; 10(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35236742

RESUMO

BACKGROUND: On the basis of efficacy in mouse tumor models, multiple CD137 (4-1BB) agonist agents are being preclinically and clinically developed. The costimulatory molecule CD137 is inducibly expressed as a transmembrane or as a soluble protein (sCD137). Moreover, the CD137 cytoplasmic signaling domain is a key part in approved chimeric antigen receptors (CARs). Reliable pharmacodynamic biomarkers for CD137 ligation and costimulation of T cells will facilitate clinical development of CD137 agonists in the clinic. METHODS: We used human and mouse CD8 T cells undergoing activation to measure CD137 transcription and protein expression levels determining both the membrane-bound and soluble forms. In tumor-bearing mice plasma sCD137 concentrations were monitored on treatment with agonist anti-CD137 monoclonal antibodies (mAbs). Human CD137 knock-in mice were treated with clinical-grade agonist anti-human CD137 mAb (Urelumab). Sequential plasma samples were collected from the first patients intratumorally treated with Urelumab in the INTRUST clinical trial. Anti-mesothelin CD137-encompassing CAR-transduced T cells were stimulated with mesothelin coated microbeads. sCD137 was measured by sandwich ELISA and Luminex. Flow cytometry was used to monitor CD137 surface expression. RESULTS: CD137 costimulation upregulates transcription and protein expression of CD137 itself including sCD137 in human and mouse CD8 T cells. Immunotherapy with anti-CD137 agonist mAb resulted in increased plasma sCD137 in mice bearing syngeneic tumors. sCD137 induction is also observed in human CD137 knock-in mice treated with Urelumab and in mice transiently humanized with T cells undergoing CD137 costimulation inside subcutaneously implanted Matrigel plugs. The CD137 signaling domain-containing CAR T cells readily released sCD137 and acquired CD137 surface expression on antigen recognition. Patients treated intratumorally with low dose Urelumab showed increased plasma concentrations of sCD137. CONCLUSION: sCD137 in plasma and CD137 surface expression can be used as quantitative parameters dynamically reflecting therapeutic costimulatory activity elicited by agonist CD137-targeted agents.


Assuntos
Imunoterapia , Neoplasias , Animais , Biomarcadores/metabolismo , Linfócitos T CD8-Positivos , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Receptores do Fator de Necrose Tumoral
17.
Expert Opin Drug Discov ; 17(1): 41-53, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34496689

RESUMO

INTRODUCTION: Immune checkpoint inhibitors and adoptive T-cell therapy based on chimeric antigen receptors are the spearhead strategies to exploit the immune system to fight cancer. To take advantage of the full potential of the immune system, cancer immunotherapy must incorporate new biotechnologies such as mRNA technology that may synergize with already approved immunotherapies and act more effectively on immune targets. AREAS COVERED: This review describes the basics of mRNA biotechnology and provides insight into the recent advances in the use of mRNA for the local and systemic delivery of immunostimulatory antibodies, proinflammatory cytokines or for optimizing adoptive T-cell therapy. EXPERT OPINION: mRNA-based nanomedicines have great potential to expand the arsenal of immunotherapy tools due to their ability to simplify and accelerate drug development and their suitability for transient and local expression of immunostimulatory molecules, whose systemic and sustained expression would be toxic. The success of mRNA-based COVID-19 vaccines has highlighted the feasibility of this approach. Continuous advances in the delivery and construction of RNA-based vectors hold promise for improvements in clinical efficacy.


Assuntos
COVID-19 , Neoplasias , Vacinas contra COVID-19 , Descoberta de Drogas , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico , Neoplasias/genética , RNA Mensageiro/genética , SARS-CoV-2
18.
Immunother Adv ; 1(1): ltab011, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34291232

RESUMO

OBJECTIVES: Cachexia is a systemic metabolic disorder characterized by loss of fat and muscle mass, which disproportionately impacts patients with gastrointestinal malignancies such as pancreatic cancer. While the immunologic shifts contributing to the development of other adipose tissue (AT) pathologies such as obesity have been well described, the immune microenvironment has not been studied in the context of cachexia. METHODS: We performed bulk RNA-sequencing, cytokine arrays, and flow cytometry to characterize the immune landscape of visceral AT (VAT) in the setting of pancreatic and colorectal cancers. RESULTS: The cachexia inducing factor IL-6 is strongly elevated in the wasting VAT of cancer bearing mice, but the regulatory type 2 immune landscape which characterizes healthy VAT is maintained. Pathologic skewing toward Th1 and Th17 inflammation is absent. Similarly, the VAT of patients with colorectal cancer is characterized by a Th2 signature with abundant IL-33 and eotaxin-2, albeit also with high levels of IL-6. CONCLUSIONS: Wasting AT during the development of cachexia may not undergo drastic changes in immune composition like those seen in obese AT. Our approach provides a framework for future immunologic analyses of cancer associated cachexia.

19.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34172583

RESUMO

Costimulation via CD137 (4-1BB) enhances antitumor immunity mediated by cytotoxic T lymphocytes. Anti-CD137 agonist antibodies elicit mild liver inflammation in mice, and the maximum tolerated dose of Urelumab, an anti-human CD137 agonist monoclonal antibody, in the clinic was defined by liver inflammation-related side effects. A protease-activated prodrug form of the anti-mouse CD137 agonist antibody 1D8 (1D8 Probody therapeutic, Pb-Tx) was constructed and found to be selectively activated in the tumor microenvironment. This construct, which encompasses a protease-cleavable linker holding in place a peptide that masks the antigen binding site, exerted antitumor effects comparable to the unmodified antibody but did not result in liver inflammation. Moreover, it efficaciously synergized with both PD-1 blockade and adoptive T-cell therapy. Surprisingly, minimal active Pb-Tx reached tumor-draining lymph nodes, and regional lymphadenectomy did not abrogate antitumor efficacy. By contrast, S1P receptor-dependent recirculation of T cells was absolutely required for efficacy. The preferential cleavage of the anti-CD137 Pb-Tx by tumor proteases offers multiple therapeutic opportunities, including neoadjuvant therapy, as shown by experiments in which the Pb-Tx is given prior to surgery to avoid spontaneous metastases.


Assuntos
Antineoplásicos/toxicidade , Antineoplásicos/uso terapêutico , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Imunoterapia , Inflamação/patologia , Fígado/patologia , Neoplasias Pulmonares/secundário , Linfonodos/efeitos dos fármacos , Linfonodos/patologia , Camundongos , Terapia Neoadjuvante , Peptídeo Hidrolases/metabolismo
20.
Eur J Immunol ; 51(9): 2274-2280, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33963542

RESUMO

In humans, IL-8 (CXCL8) is a key chemokine for chemotaxis of polymorphonuclear leukocytes and monocytes/macrophages when acting on CXCR1 and CXCR2. CXCL8 activity on neutrophils includes chemotaxis and eliciting the extrusion of neutrophil extracellular traps (NETs). In this study, we show that concentrations of IL-8 that induce NETosis surpass in at least one order of magnitude those required to elicit chemoattraction in human neutrophils. IL-8-induced NETosis was less dependent on G-proteins than migration, while extracellular Ca+2 chelation similarly inhibited both processes. Reactive oxygen species (ROS) were more important for NETosis than for chemotaxis as evidenced by neutralization with N-acetyl -cysteine. Interestingly, selective blockade with anti-CXCR1 mAb inhibited NETosis much more readily than chemotaxis, while pharmacological inhibition of both CXCR1 and CXCR2, or selective inhibition for CXCR2 alone, similarly inhibited both functions. Together, these results propose a model according to which low concentrations of IL-8 in a gradient attract neutrophils to the inflammatory foci, while high receptor-saturating concentrations of IL-8 give rise to NETosis once leukocytes reach the core of the inflammatory insult.


Assuntos
Quimiotaxia/imunologia , Armadilhas Extracelulares/imunologia , Interleucina-8/imunologia , Neutrófilos/imunologia , Acetilcisteína/metabolismo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Receptores de Interleucina-8A/antagonistas & inibidores , Receptores de Interleucina-8A/metabolismo , Receptores de Interleucina-8B/antagonistas & inibidores , Receptores de Interleucina-8B/metabolismo , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...